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Abstract
We consider charge fluctuations in a quantum dot coupled to an interacting one-
dimensional electron liquid. By tuning the coupling between the dot and the
one-dimensional electron liquid, one can access the various regimes which
arise, which include a quantum critical and a two-channel Kondo regime.
The differential capacitance is computed and is shown to contain detailed
information about the system.

Nanotechnology has been the source of a renewed interest in the Kondo effect [1]. The
incredible progress in miniaturizing solid state devices has made it possible to fabricate small
metallic islands (i.e. quantum dots) by confining electrons in a two-dimensional electron gas.
Quantum dots provide a highly controllable environment in which to study Kondo physics,
and allow many aspects of the Kondo effect to be probed.

Most of the studies of the Kondo effect in quantum dots have focused on the case where
the dot behaves as a magnetic impurity [1]. However, it has been known for some time that
charge fluctuations in a quantum dot can give rise to Kondo physics as well [2, 3]. In this work,
we consider charge fluctuations in a quantum dot coupled to an interacting one-dimensional
electron liquid. We find the system to have several interesting regimes, including a quantum
critical (QC) regime and a two-channel Kondo regime. These regimes can be accessed by
tuning the coupling between the dot and the one-dimensional electron liquid; this system
could provide a controlled environment in which to probe their properties. In particular, as
discussed in detail below, this system provides the remarkable opportunity to directly probe
impurity properties of a Kondo system.

It is worth noting this system is not only interesting for its Kondo physics, but also due
to its relation/relevance to other systems which have attracted considerable attention [4, 5].
In particular, the fluctuations in the QC regime are similar to the ‘local QC fluctuations’
which have been argued to describe the behaviour seen in heavy fermion materials [4]. More
generally, these fluctuations could be relevant for strongly correlated metals, including doped
Mott insulators. This system could provide a controlled environment in which to probe those
fluctuations.
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Figure 1. The set-up: a quantum dot coupled to an interacting one-dimensional electron liquid.
The number of electrons on the dot is controlled by the gate voltage Vg. A voltage applied to the
auxiliary gates, Va, controls the coupling between the dot and the one-dimensional electron liquid.

The set-up that we consider is shown in figure 1. A large quantum dot is coupled to a
reservoir, consisting of an interacting one-dimensional electron liquid. The dot is capacitively
coupled to a gate; the gate voltage Vg controls the number of electrons on the dot. The coupling
between the dot and the reservoir is controlled by a voltage Va applied to the auxiliary gates.
To model the dot, we assume that the level spacing of the dot is much smaller than any energy
scale in the problem; we approximate the spectrum of the dot by a single-particle continuum.
Moreover, we consider the case where the reservoir is coupled to the dot via a point contact.
The Hamiltonian for the dot has the form Hdot = H0(dot)+ Hint. H0(dot) describes the single-
particle energy levels of the dot; Hint describes the charging energy of the dot, as well as the
coupling to the reservoir:

Hint = Ec

2
(N̂ − N̄ )2 + t (ψ†

2,s(0)ψ
†
1,s(0) + h.c.). (1)

In equation (1),ψ2,s (ψ1,s) destroys an electron in the dot (reservoir); N̂ is the number operator
of the dot; N̄ is the optimal number of electrons on the dot, which is proportional to Vg; Ec

is the charging energy of the dot; t is the matrix element for tunnelling between the dot and
the reservoir, which is controlled by Va. For generic values of N̄ , it costs a finite energy to
put an extra electron on the dot; for temperatures sufficiently less that Ec, Coulomb blockade
develops and the number of electrons on the dot becomes quantized. However, for N̄ = n+1/2
the energies of the n-electron and (n + 1)-electron states are equal, and the charging energy
vanishes. Therefore, quantum fluctuations between the dot and the reservoir become important.

In the following, we assume that t is small and we focus on the regime N̄ ≈ n + 1/2. For
energies sufficiently less than Ec, the physics will be dominated by the states n and (n + 1).
Hence, we can project out all other states and restrict ourselves to this subspace. On considering
these states as the two states of a pseudospin τ z = ±1/2 and writing N̂ = (n + 1/2) + τ z , Hint

takes the form [2]

Hint = t (τ +σ−
i, jψ

†
i,s(0)ψ

†
j,s(0) + h.c.)− hτ z, (2)

where h = Ec[N̄ −(n+1/2)]. Equation (2) is a Kondo Hamiltonian with anisotropic couplings.
Whereas the Kondo effect usually involves a magnetic impurity, it arises in this system due to
charge fluctuations.

Recently, it was argued that, besides the Kondo physics of equation (2), other types of
behaviour are possible [6]. In particular, by performing a variational calculation, these authors
identified that quantum fluctuations might give rise to tricritical Ising behaviour. However,
it remains to be seen whether these results will be confirmed numerically or experimentally.



From quantum critical to two-channel Kondo physics via charge fluctuations in a quantum dot 7049

In this work, we focus on regimes where the system is far from the potential tricritical point,
with the result that the Kondo physics dominates.

Being interested in the low energy properties of the system, we expand the electron operator
in the reservoir in terms of right and left movers:

ψ1,s(x) = eikF xψR,1,s(x) + e−ikF xψL,1,s(x),

where kF is the Fermi wavevector, and ψR,1,s and ψL,1,s are the (slowly varying) right and
left moving fermion operators. Moreover, upon expanding the electron operator in the dot in
harmonics centred about the point contact, the reservoir couples to only a single harmonic [7].
Focusing on that single harmonic, we can write an effective one-dimensional model for the
dot [7]. In what follows, we will make extensive use of the boson representation. To do so, the
electron operator is written as ψR/L,i,s ∼ e±i

√
4πφR/L,i,s where the chiral fields, φR,i,s and φL,i,s,

are related to the usual Bose field φi,s and its dual field θi,s by φi,s = φR,i,s + φL,i,s and θi,s =
φR,i,s −φL,i,s. It will also prove useful to form charge and spin fieldsφi,ρ/σ = (φi,↑±φi,↓)/

√
2.

In terms of these variables,

H (lead) + H0(dot) = vF

2

2∑
i=1

∫ 0

−∞
dx (∂xθi,σ )

2 + (∂xφi,σ )
2

+
vF

2

2∑
i=1

∫ 0

−∞
dx Ki (∂xθi,ρ)

2 +
1

Ki
(∂xφi,ρ)

2. (3)

The Luttinger parameter in the reservoir, K1, is determined by the interactions—K1 < 1 for
repulsive interactions and K1 > 1 for attractive interactions. For the dot, K2 = 1. In this work,
we will focus on the case of repulsive interactions, K1 < 1. To analyse the physics it will prove
useful to unfold the system, and work solely in terms of right moving fields [8]. Moreover, by
forming linear combinations of the Bose fields in the dot and the reservoir, the system can be
treated as two identical Luttinger liquids with an effective Luttinger parameter [7]

K = 2K1

K1 + 1
. (4)

The effects of equation (2) can be deduced by a renormalization group (RG) analysis.
More generally, we will consider

Hint = t (τ +σ−
i, jψ

†
i,s(0)ψ

†
j,s(0) + h.c.) + t ′τ zσ z

i, jψ
†
i,s(0)ψ

†
j,s(0)− hτ z . (5)

Though the t ′ term is not present in equation (2), it will be generated upon renormalization.
To lowest non-trivial order, the RG equations for the parameters are

dλxy

dl
= 1

2

(
1 − 1

K

)
λxy +

1

K
λxyλz,

dλz

dl
= (λxy)2,

dλh

dl
= λh − K (λxy)2λh, (6)

where λxy ∼ t , λz ∼ t ′, and λh ∼ h. The RG flows in the λz–λxy plane are plotted in figure 2.
Notice that there is a QC point occurring when λxy

c ≡ (1 − K )/(2
√

K ). For λxy � λ
xy
c the

coupling flows to zero, while forλxy > λ
xy
c the system flows to strong coupling. For λxy � λ

xy
c ,

the system flows to the fixed point where the dot is decoupled from the reservoir. (We will refer
to this as the decoupled fixed point.) In terms of the effective Kondo model, the ‘impurity’ is
unscreened at low energies. For λxy > λ

xy
c , λxy initially decreases under the RG. However, it

will eventually start to increase and then flow off to strong coupling. Integrating equation (6),
we find that λxy = O(1) at a scale

TK = Ec exp

[−1

|δ| [arccos(|δ|)− arctan(x0/|δ|)]
]
, (7)
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Figure 2. RG flows of equation (6).

where x0 = (K − 1)/(2K ) and |δ| = √{(λxy)2/K − x2
0}. For energies below TK, the dot

and the reservoir are strongly coupled. The strong coupling fixed point which arises is non-
trivial—it corresponds to the two-channel Kondo fixed point with a spin-1/2 impurity [3]. This
occurs because both spin-up and spin-down electrons in the reservoir try to occupy the single
available charge state on the dot.

It should be noted that a related system was considered recently in [9]. In that work, the
authors considered a resonant level coupled to a Luttinger liquid of spinless fermions. If the
Luttinger parameter was smaller than some critical value, K < Kc, they too found a transition
as one tuned the coupling between the dot and the Luttinger liquid. The authors of [9] focused
on the zero-temperature properties of their system. In this work, we show that much rich
physics can be observed at finite temperatures and frequencies.

The quantity of experimental interest is the differential capacitance. In terms of the
effective Kondo model, this corresponds to the impurity susceptibility [2, 3]. Hence, we will
need to calculate correlation functions of impurity operators. To begin with, we will focus on
the regime where λxy < O(1). In this regime, we can calculate the impurity susceptibility
using the RG. In general, an N-point impurity correlation function G N (τ1, . . . , τN ; λi , Ec) ≡
〈τ z(τ1) . . . , τ

z(τN )〉 satisfies the RG equation[
∂

∂l
+

∑
i

βi
∂

∂λi
+ Nγ

]
G N (τ1, . . . , τN ; λi , Ec) = 0, (8)

where βi = dλi/dl, and γ is the anomalous exponent. The solution of equation (8) is

G N (τ1, . . . , τN ; λi , Ec) = exp

[
−N

∫ l∗

0
dl γ (l)

]
G N (τ1, . . . , τN ; λi(l

∗), e−l∗ Ec).

Using equation (6), we obtain

G N (τ1, . . . , τN ; λi , Ec) = e−N K (1−K )/2e−N K 2 f (l∗)G N (τ1, . . . , τN ; λi(l
∗), e−l∗ Ec), (9)

where

f (l∗) = |δ|
[

y2
0 + (|δ| − x0)

2e2|δ|l∗

y2
0 − (|δ| − x0)2e2|δ|l∗

]
(λxy < λxy

c ), (10a)

f (l∗) = x0

1 − x0l∗
(λxy = λxy

c ), (10b)

f (l∗) = |δ| tan

[
|δ|l∗ + arctan

(
x0

|δ|
)]

(λxy > λxy
c ). (10c)
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Figure 3. C(h; T = 0) versus h for λxy � λ
xy
c (with K = 0.6). Solid curve: |δ| = 0; dashed

curve: |δ| = 0.1; dash–dotted curve: |δ| = 0.2; dotted curve: |δ| = 0.3.

In equation (10), x0 = (K −1)/(2K ); y0 = λxy/
√

K and |δ| = √{x2
0 − y2

0} in equation (10a);
|δ| = √{(λxy)2/K − x2

0} in equation (10c). Choosing el∗ ∼ Ec/E , the correlation function
on the right-hand side of equation (9) can be evaluated perturbatively.

We start by considering the temperature dependence of the differential capacitance on
resonance, C(h → 0; T ). Using equation (9) with N = 2, we obtain

C(h → 0; T ) = eK (K−1)

4T
e−2K 2 f (T ), (11)

where f (T ) is given by equation (10) with l∗ = ln(Ec/c1T ) (c1 is an O(1) constant). From
equation (11), we see that C(h → 0; T ) ∼ T −1 near the decoupled fixed point, T → 0
for λxy � λ

xy
c . However, it is worth noting there is an additive logarithmic correction when

λxy = λ
xy
c : C(h → 0; T ) ∼ T −1[1 + 2K 2/ ln(Ec/c1T )]. Moreover, in the QC regime

(λxy = λ
xy
c for T  Ec exp[2K/(K − 1)]), C(h → 0; T ) ∼ TT −1 whereT = (1 − K )2/2.

It is also interesting to consider the differential capacitance at T = 0 as a function of gate
voltage, C(h; T = 0) = Ec d〈τ z〉/dh. Using equation (9) with N = 1, we obtain

〈τ z〉 = ±eK (K−1)/2

2
e−K 2 f (|h|), (12)

where the plus (minus) sign is for h > 0 (h < 0), and f (|h|) is given by equation (10) with
l∗ = ln(Ec/c2|h|) (c2 is another O(1) constant). The differential capacitance versus gate
voltage is plotted in figure 3. Near the decoupled fixed point, we find C(h; T = 0) ∼ |h|2|δ|−1

as |h| → 0 (|δ| is as in equation (10a)). When λxy = λ
xy
c , similarly to C(h → 0; T ),

C(h; T = 0) receives logarithmic corrections. However, this time the logarithmic correction
is multiplicative: C(h; T = 0) ∼ 1/[|h| ln2(Ec/c2|h|)]. Also, in the QC regime (|h| 
Ec exp[2K/(K − 1)]), C(h; T = 0) ∼ |h|h−1 whereh = (1 − K )2/4.

Notice that near the decoupled fixed point, C(h → 0; T ) ∼ T −1 as T → 0. This Curie–
Weiss-like form arises because the ‘impurity’ behaves basically like a free spin. However, the
local ‘moment’ is reduced from its non-interacting value. From equation (12), we see that the
amount by which the local ‘moment’ is reduced depends on K , as well as the value of λxy .
Also, in the QC regime, the differential capacitance has power-law behaviour; the exponents
satisfy T = 2h .
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Figure 4. Fixed points and RG flows.

Now, we consider the physics in the regime λxy > λ
xy
c for energies below TK (with

TK given by equation (7)). In this regime, the system is close to the two-channel Kondo
fixed point. To proceed, we follow [10] and form combinations of the fields in the dot and
the reservoir: φR,c, φR,sp, φR,f , and φR,sf . Then, we perform the unitary transformation,
U = exp(i

√
4π/Kτ zφR,f(0)), which ties charge to the ‘impurity’. Finally, we introduce

new fermion fields, d ∼ τ−, X ∼ ei
√

4πφR,sf , and f ∼ ei
√

4πφR,f . Upon performing these
transformations, Hint becomes

Hint = vFλ̃
xy(d† + d)(X†(0)− X (0))

+ vF

√
4π/K (λ̃z − 1)(d†d − 1/2) f †(0) f (0)− vFλ̃

h(d†d − 1/2), (13)

where λ̃xy , λ̃z , and λ̃h are the renormalized values of the couplings.
Using equation (13), we can calculate the differential capacitance near the two-channel

Kondo fixed point. Starting with the differential capacitance on resonance, we find (ignoring
the irrelevant (λ̃z − 1) term)

C(h → 0;ω, T ) = 1

TK

∫
dx

2π
tanh

(
xTK

2T

)
1

x2 + 1

1

x − (ω/TK)− i0+
. (14)

For ω = 0 and T � TK, this reduces to the well-known result for the impurity susceptibility
of the two-channel Kondo model C(h → 0; T ) = 1/(πTK) ln(TK/T ). We can also calculate
C(h; T = 0). Using equation (13) (ignoring the irrelevant (λ̃z − 1) term),

〈τ z〉 = h

TK

∫
dx

2π
tanh

(
xTK

2T

)
x

(x2 − (h/TK)2)2 + x2
. (15)

For T = 0 and |h| � TK, C(h; T = 0) = 4/(πTK) ln(TK/|h|). Notice that C(h → 0; T )
(C(h; T = 0)) diverges as T → 0 (|h| → 0). However, the divergence in this case is weaker
than what occurs near the decoupled fixed point. This is because, near the two-channel Kondo
fixed point, charge is tied to the ‘impurity’. As a result, the ground states τ z = 1/2 and −1/2
are orthogonal, in that they are not connected by τ + or τ− [11]. This removes the power-
law divergence which occurs near the decoupled fixed point, and replaces it with the weaker
logarithmic divergence.

In the above discussion, we saw three fixed points arise (shown schematically in figure 4):
(1) the decoupled fixed point, (2) a QC point, and (3) the two-channel Kondo fixed point.
The QC point and the two-channel Kondo fixed point are particularly interesting because they
are non-trivial scale invariant fixed points. As a consequence, one should be able to observe
ω/T scaling near these fixed points by applying an AC component to the gate voltage. More
specifically, we expect the dynamical capacitance on resonance to have the form

C(h → 0;ω, T ) = T ν−1 X (ω/T ). (16)

In the QC regime, we can calculate the scaling function X (ω/T ) for (1 − K ) � 1. In the
leading logarithm approximation, we find ν = T (T = (1 − K )2/2) and

X (ω/T ) = 1

4π

(
2π

Ec

)ν
sin

(
πν

2

)
B

(
ν

2
− i

ω

2πT
, 1 − ν

)
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where B is the beta function [12]. Near the two-channel Kondo fixed point, we use equation (14)
to obtain ν = 1 and

X (ω/T ) = 1

πTK
ln

(
TK

max(ω, T )

)
+

i

2TK
tanh

(
ω

2T

)
.

Note that X (ω/T ) is, in general, complex. Therefore, the differential capacitance will have
components both in phase and out of phase with the gate voltage.

To summarize, we considered charge fluctuations in a (large) quantum dot coupled to
an interacting one-dimensional electron liquid. By tuning the coupling between the dot and
the one-dimensional electron liquid, one can access the various regimes that arise, which
include a QC and a two-channel Kondo regime. Moreover, this system provides the remarkable
opportunity to directly probe impurity properties of a Kondo system via differential capacitance
measurements. As the differential capacitance of a large quantum dot has recently been
measured [13], we are hopeful that the physics described in this work will be observed in the
near future.
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